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Abstract
Using the Sklyanin–Kharchev–Lebedev method of separation of variables
adapted to the cyclic Baxter–Bazhanov–Stroganov or the τ (2)-model, we derive
factorized formulae for general finite-size Ising model spin matrix elements,
proving a recent conjecture by Bugrij and Lisovyy.

PACS numbers: 75.10Hk, 75.10Jm, 05.50+q, 02.30Ik

1. Introduction

Much work has been done on the two-dimensional Ising model (IM) during the past 60 years.
Many analytic results for the partition function and correlations have been obtained. These
have greatly contributed to establish our present understanding of continuous phase transitions
in systems with short-range interactions [1–6]. Recent overviews with many references are
given, e.g. in [7–9]. Many rather different mathematical approaches have been used, so that
already 30 years ago Baxter and Enting published the ‘399th’ solution for the free energy
[10] (see also [11]). Spin–spin correlation functions can be written as Pfaffians of Toeplitz
determinants. Most work has focused on the thermodynamic limit and scaling properties since
these give contact to field theoretical results and to beautiful Painlevé properties [5, 6, 12].

Only during the last decade has more attention been drawn to correlations and spin matrix
elements (form factors [13]) in finite-size Ising systems [14–16]. Nanophysics experimental
arrangements often deal with systems where the finite size matters. Recent theoretical work
on the finite-size IM started from Pfaffians and related Clifford approaches. In [17] it has
been pointed out that one may write completely factorized closed expressions for spin matrix
elements of finite-size Ising systems. One goal of the present paper is to prove the beautiful
compact formula conjectured in equation (12) of [17], see (129). For achieving this, we
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introduce a method which has not yet been applied to the Ising model: separation of variables
(SoV) for cyclic quantum spin systems. Our approach is the adaption to cyclic models of
the method introduced by Sklyanin [19, 20] and further developed by Kharchev and Lebedev
[21, 22]. We also make extensive use of the analysis of quantum cyclic systems given in [23].

Little is known about state vectors of the two-dimensional finite-size IM. Only partial
information about these state vectors can be obtained from the work of [3]. Recently Lisovyy
[24] found explicit expressions using the Grassmann algebra method. Here we shall present
our SoV approach [25–27] which gives explicit formulae for finite-size state vectors too.
However, these come in a basis quite different from the one used in [24]. We shall calculate spin
matrix elements by directly sandwiching the spin operator between state vectors. Factorized
expressions result if we manage to perform the multiple spin summations over the intermediate
states.

The prototype of a general N-state cyclic spin model is the Baxter–Bazhanov–Stroganov
model (BBS) [28–30], also known as the τ (2)-model. The standard IM is a very special
degenerate case of the BBS model. In order to avoid formulating many precautions necessary
when dealing with the very special IM, we shall develop our version of the SoV machinery
considering the general BBS model. We chose to do this also because of the great interest
in the BBS model due to the fact that its transfer matrix commutes with the integrable Chiral
Potts model (CPM) [31, 32] transfer matrix [29, 33]. Obtaining state vectors for the CPM
is a great actual challenge [34, 35]. Although the eigenvectors for the transfer matrix of the
BBS model with periodic boundary condition are unknown for N > 2, explicit formulae for
the eigenvectors of the BBS model with open and fixed boundary conditions have been found
[36, 37].

This paper is organized as follows: in section 2 we define the BBS model and its Ising
specializations. In section 3 we discuss the Sklyanin SoV method adapted to the BBS model as
a cyclic system. We start with the necessary first step, the solution of the associated auxiliary
problem. In a second step we obtain the eigenvectors and eigenvalues of the periodic system
by Baxter equations. The conditions which ensure that the Baxter equations have non-trivial
solutions are formulated as truncated functional equations. Section 4 gives a description of
local spin operators in terms of global elements of the monodromy matrix. Starting with
section 5 we restrict ourselves to the case N = 2, for which the BBS model becomes a
generalized five-parameter plaquette Ising model. In section 6 we further specialize to the
homogeneous case and then to the two-parameter Ising case. Periodic boundary condition
eigenvectors are explicitly constructed. Section 7 is devoted to our main result, the proof of
the factorized formula for Ising spin matrix elements between arbitrary finite-size states. This
is shown to agree with the Bugrij–Lisovyy conjecture. In section 8 we give an analogous
formula for the Ising quantum chain in a transverse field. Finally, section 9 presents our
conclusions. A large part of this paper relies on our work in [25–27]. Sections 4, 2.2 and 6.2
give new material.

2. The BBS τ (2) model

2.1. The inhomogeneous BBS model for general N

We define the BBS model as a quantum chain model. To each site k of the quantum chain we
associate a cyclic L-operator [29, 30] acting in a two-dimensional auxiliary space

Lk(λ) =
(

1 + λ�kvk, λu−1
k (ak − bkvk)

uk(ck − dkvk), λakck + vkbkdk/�k

)
, k = 1, 2, . . . , n. (1)
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λ is the spectral parameter, n is the number of sites. There are five parameters �k, ak, bk, ck, dk

per site. uk and vk are elements of an ultra local Weyl algebra, obeying

uj uk = ukuj , vj vk = vkvj , uj vk = ωδj,k vkuj , ω = e2π i/N , uN
k = vN

k = 1.

At each site k we define an N-dimensional linear space (quantum space) Vk with the basis
|γ 〉k, γ ∈ ZN , the dual space V∗

k with the basis k〈γ |, γ ∈ ZN , and the natural pairing
k〈γ ′|γ 〉k = δγ ′,γ . In Vk and V∗

k the Weyl elements uk and vk act by the formulae:

uk|γ 〉k = ωγ |γ 〉k, vk|γ 〉k = |γ + 1〉k; k〈γ |uk = k〈γ |ωγ , k〈γ |vk = k〈γ − 1|.
(2)

The monodromy Tn(λ) and transfer matrix tn(λ) for the n sites chain are defined as

Tn(λ) = L1(λ) · · · Ln(λ) =
(

An(λ) Bn(λ)

Cn(λ) Dn(λ)

)
, tn(λ) = tr Tn(λ) = An(λ) + Dn(λ). (3)

This quantum chain is integrable since the L-operators (1) are intertwined by the twisted
6-vertex R-matrix at root of unity

R(λ, ν) =

⎛⎜⎜⎝
λ − ων 0 0 0

0 ω(λ − ν) λ(1 − ω) 0
0 ν(1 − ω) λ − ν 0
0 0 0 λ − ων

⎞⎟⎟⎠, (4)

R(λ, ν)L
(1)
k (λ)L

(2)
k (ν) = L

(2)
k (ν)L

(1)
k (λ)R(λ, ν), (5)

where L
(1)
k (λ) = Lk(λ) ⊗ I, L

(2)
k (λ) = I ⊗ Lk(λ). Relation (5) leads to [tn(λ), tn(μ)] = 0.

So tn(λ) is the generating function for the commuting set of non-local and non-Hermitian
Hamiltonians H0, . . . , Hn:

tn(λ) = H0 + H1λ + · · · + Hn−1λ
n−1 + Hnλ

n. (6)

From (5) it also follows that the upper-right entry Bn(λ) of Tn(λ) is the generating function
for another commuting set of operators h1, . . . , hn:

[Bn(λ), Bn(μ)] = 0, Bn(λ) = h1λ + h2λ
2 + · · · + hnλ

n. (7)

Observe that H0 and Hn can easily be written explicitly in terms of the global ZN -charge
rotation operator Vn

H0 = 1 + Vn

n∏
k=1

bkdk

�k

, Hn =
n∏

k=1

akck + Vn

n∏
k=1

�k, Vn = v1v2 · · · vn. (8)

Here we shall not explain the great interest in the BBS model due to a second intertwining
relation in the Weyl-space indices found in [29] and the related fact that for particular
parameters the Baxter Q-operator of the BBS model is the transfer matrix of the integrable
Chiral Potts model, see [29, 33, 38]. We will also not discuss the generalizations of the BBS
model introduced by Baxter in [39], and not explain how (1) arises in cyclic representations
of the quantum group Uq(sl2) (see e.g. [23, 40, 41]).

The transfer matrix (3) can be written equivalently as a product over face Boltzmann
weights [28, 33]:

tn(λ) = ∏n+1
k=2 Wτ(γ

′
k−1, γ

′
k, γk, γk−1) where each square plaquette of the lattice (see

figure 1) contributes the Boltzmann weights

Wτ(γk−1, γk, γ
′
k−1, γ

′
k) =

1∑
mk−1=0

ωmk−1(γ
′
k−γk−1)

× (−ωtq)
γk−γ ′

k−mk−1F ′
k−1(γk−1 − γ ′

k−1,mk−1)F
′′
k (γk − γ ′

k,mk−1) (9)

3
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Figure 1. Illustration of the two versions: (left) we see the W of (9) indicated by full lines, whereas
the Lk of (1) and (3) arise if we look at the lattice formed by the dashed lines in the left figure
and the dashed rhombus shown in the right. The lattice is built by ZN -spins on the full lines and
Z2-spins in the centers.

where mk ∈ {0, 1} and F ′
k(
γ,mk) = F ′′

k (
γ,mk) = 0 if 
γ �= {0, 1}, and the non-vanishing
values are

F ′
k =

(
1 λak

�k −bk/ω

)
, F ′′

k =
(

1 λck

1 −dk/�k

)
. (10)

The vanishing of F ′
k(
γ,mk) and F ′′

k (
γ,mk) for 
γ �= {0, 1} means that the vertically
neighboring ZN -spins cannot differ by more than 1. The equivalence to the transfer matrix
defined by (1) and (3) is seen writing the matrix elements of (1) as

〈γ ′
k|Lk(λ)mk−1,mk

|γk〉 = ωmk−1γ
′
k−mkγkλγ ′

k−γk−mk−1F ′′
k (γ ′

k − γk,mk−1)F
′
k(γ

′
k − γk,mk). (11)

2.2. Homogeneous BBS model for N = 2

The integrability of the BBS model is also valid if the parameters �k, ak, . . . , dk vary from
site to site and the construction of eigenvalues and eigenvectors can be performed for this
general case. However, in order to obtain compact explicit formulae for matrix elements, we
shall often make all parameters equal: �k = �, . . . , dk = d and call this the homogeneous
model. In [42] it has been shown that for N = 2 the general homogeneous BBS model can be
rewritten as a generalized plaquette Ising model with Boltzmann weights

W(σ1, σ2, σ3, σ4) = a0

⎛⎝1 +
∑

1�i<j�4

aijσiσj + a4σ1σ2σ3σ4

⎞⎠ , (12)

subject to the free-fermion condition a4 = a12a34 − a13a24 + a14a23.

For N = 2 the Weyl elements can be represented by Pauli matrices. Fixing � = 1 the
L-operator becomes

Lk(λ) =
(

1 + λσx
k λσ z

k

(
a − bσx

k

)
σ z

k

(
c − dσx

k

)
λac + σx

k bd

)
degenerating at λ = b/a:

Lk(b/a) =
(

1 + b
/
aσ x

k

σ z
k

(
c − dσx

k

)) (1, bσ z
k

)
.

4
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σk−1 σk
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Figure 2. Transfer matrix for the triangular Ising lattice. Solid lines show the interaction between
spins.

The matrix elements of the corresponding transfer matrix are

〈{σ ′}|tn(b/a)|{σ }〉 =
n∏

k=1

(
δσk,σ

′
k
(1 + bcσk−1σ

′
k) + δσk,−σ ′

k
b/a(1 − adσk−1σ

′
k)
)
,

where {σ } = {σ1, . . . , σn} and {σ ′} = {σ ′
1, . . . , σ

′
n} are the values of the spin variables of two

neighboring rows, σk = (−1)γk , σ ′
k = (−1)γ

′
k ∈ {+1,−1}, and the identifications σn+k = σk ,

σ ′
n+k = σ ′

k are used.
The matrix elements of the transfer matrix of the Ising model on the triangular lattice (see

figure 2) are

〈{σ ′}|t	|{σ }〉 =
n∏

k=1

exp(Kxσk−1σk + Kyσkσ
′
k + Kdσk−1σ

′
k). (13)

The kth factor of this product, taken at σk = σ ′
k is

exp(Ky) exp((Kx + Kd)σk−1σ
′
k)

= exp(Ky) cosh(Kx + Kd)(1 + tanh(Kx + Kd)σk−1σ
′
k),

and at σk = −σ ′
k is

exp(−Ky) exp((Kd − Kx)σk−1σ
′
k)

= exp(−Ky) cosh(Kd − Kx)(1 + tanh(Kd − Kx)σk−1σ
′
k).

Now it is easy to compare the transfer matrices tn(b/a) and t	:

t	 = exp(nKy) coshn(Kx + Kd)tn(b/a), exp(−2Ky)
cosh(Kd − Kx)

cosh(Kd + Kx)
= b/a,

tanh(Kx + Kd) = bc, tanh(Kx − Kd) = ad.

Although we considered tn(λ) at the special value of the spectral parameter λ = b/a, the
transfer-matrix eigenstates are independent of this choice of λ. So the eigenstates of the
transfer matrix of the Ising model on the triangular lattice appear as eigenstates of the general
homogeneous BBS model for N = 2 (the parameter � and one of the parameters a, . . . , d
in the case of homogeneous periodic BBS model can be absorbed by a rescaling of the other
parameters and using a diagonal similarity transformation of the L-operators). The formulae
for them will be given later. Unfortunately, factorized formulae for the matrix elements of the
spin operator in this general case have not been found. There are only two special cases for
which such formulas are available:

5
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• The row-to-row transfer-matrix for the Ising model on the square lattice:

a = c, b = d : Kd = 0, e−2Ky = b/a, tanh Kx = ab. (14)

This case will be the main object of our attention. It is the most general case where we
have the factorized formula for the spin operator matrix elements found by Bugrij and
Lisovyy.

• Diagonal-to-diagonal transfer matrix for the Ising model on the square lattice:

a = c, b = −d : Kx = 0, e−2Ky = b/a, tanh Kd = ab. (15)

It is known [43] that such transfer matrices with different parameters Ky = L,Kd = K

(and corresponding a, b) constitute a commuting set of matrices having common
eigenvectors, provided

sinh 2K sinh 2L = a2 − b2

1 − a2b2
= 1

k′ (16)

is fixed. Thus in this case the eigenvectors depend on k′ only. Therefore, in order to find
the eigenvectors and the corresponding matrix elements of the spin operator it is sufficient
to fix a = c = 1/(k′)1/2 and b = d = 0 and so to obtain a special case of the formulae
for the row-to-row transfer matrix of the Ising model on the square lattice. Note that we
get [27] the same matrix elements in the case of the quantum Ising chain in a transverse
field with strength k′ because the corresponding Hamiltonian commutes with the transfer
matrices having the same k′. Another remark: with the restriction a = c, b = −d, � = 1,
the transfer matrices commute among themselves at independent values of two spectral
parameters: λ and the parameter which uniformizes (16) (a parameter on the elliptic curve
with modulus k′, see [43]).

3. Separation of variables for the cyclic BBS-model

3.1. Solving the auxiliary system (7): Eigenvalues and eigenvectors of Bn(λ)

We start giving a summary of the SoV method as applied to the general inhomogeneous
ZN -BBS model [25]. The aim is to find the eigenvalues and eigenstates of the n-site periodic
transfer matrix tn(λ) of (3), and the idea [19–22] is first to construct a basis of the Nn-
dimensional eigenspace from eigenstates of Bn(λ), see (7). This can be done by a recurrent
procedure. Then the eigenstates of tn(λ) are written as linear combinations of the Bn(λ)-
eigenstates. The multi-variable coefficients are determined by Baxter T −Q-equations which
by SoV separate into a set of single-variable equations.

From (7) the eigenvalues of Bn(λ) are polynomials in the spectral variable λ. Factorizing
this polynomial, for n � 2 we obtain

Bn(λ)|�λ〉 = λλ0

n−1∏
k=1

(λ − λk)|�λ〉; λ = {λ0, λ1, . . . , λn−1}, (17)

where λ1, λ2, . . . , λn−1 are the n−1 zeros of the eigenvalue polynomial and λ0 is a normalizing
factor. We can label the eigenvectors by λ.

An overview of the space of eigenstates of Bn(λ) is easily obtained using the intertwining
relations (5). It follows from (5) that the operators An(λ) and Dn(λ) of the monodromy (3),
taken at a zero λ = λk , are cyclic ladder operators with respect to the kth component of λ in
|�λ〉. To see this consider e.g. the intertwining relation

(λ − ωμ)An(λ)Bn(μ) = ω(λ − μ)Bn(μ)An(λ) + μ(1 − ω)An(μ)Bn(λ), (18)

6
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which is a component of (5). Fixing λ = λk, k = 1, . . . , n − 1, in (18) and acting on �λ, the
last term in (18) vanishes and we obtain

Bn(μ) (An(λk)|�λ〉) = μλ0(μ − ω−1λk)
∏
s �=k

(μ − λs) (An(λk)|�λ〉). (19)

This means that

An(λk)|�λ〉 = ϕk · ∣∣�λ0,...,ω−1λk,...,λn−1

〉
. (20)

Later we shall give an explicit expression for the proportionality factor ϕk . Similarly, from
another component of (5) and with another factor ϕ̃k we obtain

Dn(λk)|�λ〉 = ϕ̃k · ∣∣�ω−1λ0,...,ωλk,...,λn−1

〉
. (21)

Furthermore, acting by (18) on |�λ〉 and extracting the coefficient of λn+1μn we obtain

Vn|�λ〉 = ∣∣�ω−1λ0,λ1,...,λn−1

〉
. (22)

Assuming generic parameters in Lk such that all proportionality factors are non-vanishing,
by repeated application of An(λk),Dn(λk) and Vn to any eigenstate |�λ〉 we span the whole
Nn-dimensional space of states. Later, when we give explicit expressions for ϕk and ϕ̃k we
can check whether these factors can vanish.

So, if for a given set of parameters ak, bk, ck, dk, �k, (k = 1, . . . , n) there is an eigenvector
with the eigenvalue polynomial determined by the zeros λ, then there are also eigenvectors to
all eigenvalue polynomials determined by the zeros

{λ0ω
ρn,1 , . . . , λn−1ω

ρn,n−1} with ρn = (ρn,0, . . . , ρn,n−1) ∈ (ZN)n. (23)

Let us therefore write the zeros as

λn,k = −rn,kω
ρn,k , (24)

where for n fixed, the n real numbers rn,k are determined by the 5n parameters al, . . . , �l . For
fixed parameters, in all following calculations, we shall label the Nn eigenvectors by the ρn

instead of our previous λn,k . For given parameters, the set of the eigenvalues is determined by
the rn,0, . . . , rn,n−1. The eigenvalue equation for Bn(λ) becomes

Bn(λ)
∣∣�ρn

〉 = λrn,0ω
−ρn,0

n−1∏
k=1

(
λ + rn,kω

−ρn,k
) ∣∣�ρn

〉
. (25)

In order to calculate the rn,k in terms of the parameters, we do not need the full quantum
transfer matrix and the Lk-operators involving the Weyl variables. Rather, by the following
averaging procedure [23]

O(λN) = 〈O(λN)〉 =
∏
s∈ZN

O(ωsλ), (26)

we associate with a spectral parameter dependent quantum operator O(λ) a classical
counterpart O(λN). We define the classical BSS model by the L-operator Lm(λN)

Lm(λN) =
(

〈L00〉 〈L01〉
〈L10〉 〈L11〉

)
=
(

1 − ε�N
m λN −ελN

(
aN

m − bN
m

)
cN
m − dN

m bN
mdN

m

/
�N

m − ελNaN
m cN

m

)
, (27)

where ε = (−1)N . Analogously, we define the classical monodromy Tn by

Tn = L1(λ
N)L2(λ

N) · · ·Ln(λ
N) =

(
An(λ

N) Bn(λ
N)

Cn(λ
N) Dn(λ

N)

)
. (28)

7
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Proposition 1.5 of [23] tells us that the classical polynomials An(λ
N),Bn(λ

N), Cn(λ
N) and

Dn(λ
N) are the averages of their counterparts in (3): An(λ

N) = 〈An(λ)〉, etc. So for n � 2
we have

Bm(λN) = (−ε)mλNrN
m,0

m−1∏
s=1

(
λN − εrN

m,s

)
. (29)

It is easy to derive [25] a three-term recursion which expresses Bm(λN) in terms of Bm−1(λ
N)

and Bm−2(λ
N). Using the initial values B1(λ

N) = −ελNrN
1 ;B0(λ

N) = 0 and defining
rN

1 = aN
1 − bN

1 , this gives a (n − 1)th degree algebraic relation for the rN
m,s .

For the homogeneous model (the constants are taken to be site independent) this can be
replaced by just a quadratic equation (see the appendix of [25]).

3.2. Solving the auxiliary system: explicit construction of the eigenvectors of Bn(λ)

The stepwise construction of the eigenvectors, starting with one site, then two site as linear
combination of products of two one-site eigenvectors, etc is tedious because we have to go to
four sites before the general rule emerges.

Let us start finding the one-site right eigenvectors |ψρ〉1 of B1(λ) as linear combination
of spin states |γ 〉1, γ ∈ ZN , writing

|ψρ〉1 =
∑
γ∈ZN

wp(γ − ρ)|γ 〉1, ρ ∈ ZN . (30)

Applying on the left B1 from (1) and on the right (25), we demand

λu−1
1 (a1 − b1v1)

∑
γ∈ZN

wp(γ − ρ)|γ 〉1 = λr1,0ω
−ρ1,0

∑
γ∈ZN

wp(γ − ρ)|γ 〉1. (31)

Applying (2) and shifting the left-hand summation for the term with |γ + 1〉1, we obtain

(a1 − r1,0ω
γ−ρ)wp(γ − ρ) = b1wp(γ − ρ − 1). (32)

This is a difference equation for the function wp(γ ) [44]:

wp(γ )

wp(γ − 1)
= y

1 − ωγ x
; wp(0) = 1; γ ∈ ZN, (33)

where we have put y = b1/a1, r1,0 = xa1 and chose the initial value wp(0) = 1. The
cyclic property wp(γ ) = wp(γ + N) imposes the Fermat condition xN + yN = 1 on the two-
component vector p = (x, y). We indicate p as a subscript on the functions wp(γ ). We shall
consider the case of ‘generic parameters’, so in particular we exclude the case aN

k − bN
k = 0,

and the ‘superintegrable’ case

ak = ω−1bk = ck = dk = �k = 1, (34)

since in the latter cases degenerations appear.
We write the analogous left eigenvector as

1〈ψρ | =
∑
γ∈ZN

1

wp(γ − ρ − 1) 1

〈γ |, ρ ∈ ZN (35)

with the same functions wp(γ ), just now p = (r1,0/a1, ω
−1b1/a1). The Fermat vector-

dependent functions wp(γ ) play an important role for cyclic models. They are root-of-unity
analogs of the q-gamma function.

8
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By a similar calculation, the two-site eigenvectors are found to be∣∣�ρ2,0,ρ2,1

〉 = ∑
ρ1,ρ2∈ZN

ω−(ρ2,0+ρ2,1−ρ1)(ρ2,0−ρ2)

wp2,0(ρ2,0 − ρ1 − 1)wp̃2(ρ2,0 + ρ2,1 − ρ2 − 1)
|ψρ1〉1 ⊗ |ψρ2〉2, (36)

where p2,0 = (x2,0, y2,0), p̃2 = (x̃2, ỹ2) and

x2,0 = a2c2
r1

r2,0
, y2,0 = �1

r2

r2,0
, x̃2 = r2

r2,0r2,1
, ỹ2 = b2d2

�2

r1

r2,0r2,1
. (37)

The condition that p2,0 and p̃2 are Fermat vectors determines r2,0 and r2,1.

The explicit formula for both the left- and right eigenvectors of Bn(λ) for general number
of sites n has been proved by lengthy induction and is given in [25]. A by-product of these
calculations are the formulae for ϕk and ϕ̃k introduced in (20) and (21):

An(λn,k)
∣∣�ρn

〉 = ϕk(ρ
′
n)
∣∣�ρ+k

n

〉
, ϕk(ρ

′
n) = − r̃n−1

rn

ω−ρ̃n+ρn,0Fn(λn,k/ω)

n−2∏
s=1

y
n,k
n−1,s , (38)

Dn(λn,k)
∣∣�ρn

〉 = ϕ̃k(ρ
′
n)
∣∣�ρ+0,−k

n

〉
, ϕ̃k(ρ

′
n) = − rn

r̃n−1

ωρ̃n−ρn,0−1∏n−2
s=1 y

n,k
n−1,s

n−1∏
m=1

Fm(λn,k), (39)

Fn(λ) = (bn + ωan�nλ)(λcn + dn/�n). (40)

On the left of (38) and (39) the eigenvectors �ρn
of Bn(λ) are labeled by the vector

ρn = (ρn,0, . . . , ρn,n−1) ∈ (ZN)n. (41)

ρ±k
n denotes the vector ρn in which ρn,k is replaced by ρn,k ± 1:

ρ±k
n = (ρn,0, . . . , ρn,k ± 1, . . . , ρn,n−1), k = 0, 1, . . . , n − 1, (42)

r̃n = rn,0rn,1 . . . rn,n−1 and ρ̃n =
n−1∑
k=0

ρn,k. (43)

ρ′
n denotes the vector ρn without the component ρn,0:

ρ′
n = (ρn,1, . . . , ρn,n−1) ∈ (ZN)n−1. (44)

The y
n,k
n−1,s are components of a Fermat vector p

n,k
n−1,s = (

x
n,k
n−1,s , y

n,k
n−1,s

)
defined by

x
n,k
n−1,s = rn,k/rn−1,s (see section 2.4 of [25]). The Fm(λ) which appears in (38) and (39)

is a factor of the quantum determinant:

An(ωλ)Dn(λ) − Cn(ωλ)Bn(λ) = Vn ·
n∏

m=1

Fm(λ). (45)

From (1) we can read off directly the λ0- and λn-coefficients of the polynomial An(λ):

An(λ) = 1 + · · · + �1�2 . . . �nVλn. (46)

Then using (38), the general action of An(λ) on Bn eigenvectors can be written as an
interpolation polynomial

An(λ)
∣∣�ρn

〉 = n−1∏
s=1

(
1 − λ

λn,s

) ∣∣�ρn

〉
+ λ�1 · · · �n

n−1∏
s=1

(λ − λn,s)
∣∣�ρ+0

n

〉
+

n−1∑
k=1

⎛⎝∏
s �=k

λ − λn,s

λn,k − λn,s

⎞⎠ λ

λn,k

ϕk(ρ
′
n)
∣∣�ρ+k

n

〉
. (47)

9
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Considerable effort is needed to present the norm of an arbitrary state vector
∣∣�ρn

〉
in

factorized form, since multiple sums over the intermediate indices have to be performed. The
norms are independent of the phase ρn,0 and their dependence on ρ′

n is

〈�ρn

∣∣�ρn

〉 = Cn∏
l<m(λn,l − λn,m)

= Cn∏
l<m(rn,mω−ρn,m − rn,lω−ρn,l )

. (48)

The normalizing factor Cn is independent of ρn and can be written recursively [26]. The two
lowest values are

C1 = N

ω

(
x1

y1

)N−1

, C2 = C1
N3

ω

(
x2

y2ỹ2y2,0

)N−1

. (49)

3.3. Periodic model: Baxter equation and truncated functional equations

In the auxiliary problem we looked for eigenfunctions of Bn. Bn does not commute with Vn

(8), see (22): Vn

∣∣�ρn

〉 = ∣∣�ρ+0
n

〉
. Now we are looking for eigenfunctions of tn which commutes

with Vn. By Fourier transformation in ρn,0 we build a basis diagonal in V, where the Fourier
transformed variable ρ ∈ ZN is the total ZN -charge:∣∣�̃ρ,ρ′

n

〉 = ∑
ρn,0∈ZN

ω−ρ·ρn,0
∣∣�ρn

〉
, Vn

∣∣�̃ρ,ρ′
n

〉 = ωρ
∣∣�̃ρ,ρ′

n

〉
. (50)

We now write the eigenfunctions |�ρ,E〉 of tn(λ) as linear combination of the
∣∣�̃ρ,ρ′

n

〉
. The

eigenvalues of tn(λ) on these states are again order n polynomials in λ:

tn(λ)|�ρ,E〉 = (E0 + E1λ + · · · + En−1λ
n−1 + Enλ

n)|�ρ,E〉. (51)

Since the values of E0 and En can be read off immediately from (8):

E0 = 1 + ωρ

n∏
m=1

bmdm/�m, En =
n∏

m=1

amcm + ωρ

n∏
m=1

�m, (52)

we combine the remaining coefficients into a vector E = {E1, . . . , En−1}, and label the
eigenvectors just by the charge ρ and E:

tn(λ)|�ρ,E〉 = tn(λ|ρ, E)|�ρ,E〉, |�ρ,E〉 =
∑
ρ′

n

QR(ρ′
n|ρ, E)

∣∣�̃ρ,ρ′
n

〉
. (53)

Now, in order to achieve SoV of the multi-variable functionsQR, we split off fromQR(ρ′
n|ρ, E)

Sklyanin’s separating factor:

QR(ρ′
n|ρ, E) =

∏n−1
k=1 QR

k (ρn,k)∏n−1
s,s ′=1
(s �=s ′)

w
p

n,s′
n,s

(ρn,s − ρn,s ′)
. (54)

We shall not give the detailed calculation and just indicate the main mechanism. We express
tn(λ) as an interpolation polynomial through the zeros λn,k of Bn(λ):

(An(λ) + Dn(λ))
∣∣�̃ρ,ρ′

n

〉 = {E0

n−1∏
s=1

(
1 − λ

λn,s

)
+ λEn

n−1∏
s=1

(λ − λn,s)

}
�̃ρ,ρ′

n

+
n−1∑
k=1

⎛⎝∏
s �=k

λ − λn,s

λn,k − λn,s

⎞⎠ λ

λn,k

(
ϕk(ρ

′
n)
∣∣�̃ρ,ρ′+k

n

〉
+ ωρϕ̃k(ρ

′
n)
∣∣�̃ρ,ρ′−k

n

〉)
. (55)

When we evaluate (55) successively at the n − 1 values λ = λn,k, k = 1, . . . , n − 1, the terms
on the right of the first line of (55) do not contribute. Due to the Sklyanin-factor the brackets

10
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involving the differences λn,k − λn,s are made to cancel, leading to SoV. This results in the
n − 1 single-variable λn,k Baxter equations (k = 1, . . . , n − 1)

tn(λn,k|ρ, E)QR
k (ρn,k) = 
+

k (λn,k)Q
R
k (ρn,k + 1) + 
−

k (ωλn,k)Q
R
k (ρn,k − 1). (56)

Starting from the left eigenvectors the analogous left Baxter equations are

tn(λn,k|ρ, E)QL
k (ρn,k) = ωn−1
−

k (λn,k)Q
L
k (ρn,k + 1) + ω1−n
+

k (ωλn,k)Q
L
k (ρn,k − 1), (57)

where we abbreviated


+
k (λ) = (ωρ/χk)(λ/ω)1−n

n−1∏
m=1

Fm(λ/ω), 
−
k (λ) = χk(λ/ω)n−1Fn(λ/ω). (58)

χk collects several factors (partly arising from ϕk and ϕ̃k) determined by constants
�k, ak, . . . , dk alone. Now note that the left-hand side of (56) more explicitly reads(

E0 +
n−1∑
s=1

Esλ
s
n,k + Enλ

n
n,k

)
QR

k (ρn,k) = · · ·

where the E are unknown and have to be determined from the system of homogeneous
equations (56) together with the n − 1 functions QR

k (ρn,k). In order to have a non-trivial
solution, the coefficient determinants have to be degenerate. Fix a k, and then from the
determinant we may get one relation among E0, . . . , En. All n − 1 systems for different k

should be sufficient to determine all components of E. Fortunately, the condition for non-trivial
solutions to (56) can be written as well-known truncated functional equations:

Define τ (2)(λ) = t (λ) 5 and construct a fusion hierarchy [45, 33] by setting τ (0)(λ) =
0, τ (1)(λ) = 1, and

τ (j+1)(λ) = τ (2)(ωj−1λ)τ (j)(λ) − ωρz(ωj−1λ)τ (j−1)(λ), j = 2, 3, . . . , N, (59)

where

z(λ) = ω−ρ
+(λ)
−(λ) =
n∏

m=1

Fm(λ/ω). (60)

Then it can be shown [25] that if τ (N+1)(λ) satisfies the truncation identity

τ (N+1)(λ) − ωρz(λ)τ (N−1)(ωλ) = An(λ
N) + Dn(λ

N) (61)

with An(λ
N) + Dn(λ

N) given in (28), then the system (56) has a non-trivial solution for all
k. This truncated hierarchy can be used to find the transfer-matrix eigenvalues [46, 47]. In
our construction we have even more: for every solution of (59) and (61) we can construct an
eigenvector.

4. Action of uk and vk on eigenstates of Bn(λ)

Our main aim is to calculate matrix elements of the local operators uk and vk between
eigenstates |�ρ,E〉 of tn(λ). Since we know how to get these states from the Bn(λ) eigenstates
(53)–(56), we first set out to find the action of the local operators on the

∣∣�ρn

〉
. Since we built

our auxiliary states successively from one-site to n-site, the formulae will not be symmetric
between, e.g. uj and uk with j �= k.

For un we can calculate its action directly. Starting from

u−1
n (an − bnvn)

∣∣ψρn

〉
n

= rnω
−ρn
∣∣ψρn

〉
n
,

5 This definition in [29] is the origin of calling the BBS model the τ (2)-model.
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we get the formula for the action of un on one-site eigenvectors:

un

∣∣ψρn

〉
n

= ωρn

rn

(
an

∣∣ψρn

〉
n
− bn

∣∣ψρn+1
〉
n

)
. (62)

Using then the explicit recursion formula relating
∣∣�ρn

〉
to
∣∣�ρn−1

〉
one finds [26]:

un

∣∣�ρn

〉 = an

r̃nω−ρ̃n

∣∣�ρn

〉− bn�1�2 · · · �n−1

rn,0ω−ρn,0

∣∣�ρ+0
n

〉
+

n−1∑
k=1

anbnϕk(ρ
′
n)

rn,0ω−ρn,0λn,k(bn + an�nλn,k)
∏

s �=k(λn,k − λn,s)

∣∣�ρ+k
n

〉
. (63)

We shall derive this result in a simpler way expressing the local operators uk and vk in terms of
the global entries An and Bn of the monodromy matrix, taken at particular values of λ. There
is a well-known method elaborated by the Lyon group [48]. However, this method requires
the fulfillment of the condition R(0) = P with R being the quantum R-matrix intertwining
two L-operators in quantum spaces and P the permutation operator. This requirement is
fulfilled for the cyclic L-operators only at special values of parameters where the R-matrix is
the product of four weights of the Chiral Potts model [29]. Another requirement regards the
possibility to obtain such a R-matrix by fusion in the auxiliary space of the initial L-operator.
This requirement cannot be fulfilled for the cyclic L-operators (1) because the fusion in the
auxiliary space [49] gives L-operators with the highest weight evaluation representations of the
corresponding quantum affine algebra, but we need cyclic-type representation in the auxiliary
space.

We will use an idea borrowed from a paper of Kuznetsov on SoV for classical systems
[50]. What we can do is the following: Consider the inverse of the operator Lk(λ):

L−1
k (λ) =

(
ωλakck + vkbkdk/�k −λu−1

k (ak − bkvk)

−ωuk(ck − dkvk), 1 + ωλ�kvk

)
· (detqLk(λ))−1, (64)

where

detqLk(λ) = vkFk(λ), Fk(λ) = (bk + ωλak�k)(λck + dk/�k).

The expression for L−1
k (λ) is singular at zeros λ′

k = −bk/(ωak�k) and λ′′
k = −dk/(ck�k) of

Fk(λ). Of course,

Tn−1(λ) = Tn(λ)L−1
n (λ). (65)

Therefore at the zeros of Fn(λ) the left-hand side is regular in λ and the right-hand side also
has to be regular. At λ = λ′

n = −bn/(ωan�n) we obtain

An(λ
′
n)u

−1
n bn/(ω�n) + Bn(λ

′
n) = 0.

Hence we have a formula for un:

un = λ′
nanB

−1
n (λ′

n)An(λ
′
n). (66)

From the condition of the regularity of the right-hand side of (65) at λ = λ′′
n = −dn/(cn�n)

we obtain

An(λ
′′
n)(−λ′′

n)u
−1
n (an − bnvn) + Bn(λ

′′
n)(1 − dn/(ωcn)vn) = 0.

Excluding un by means of (66), we obtain the formula for vn:

vn = −1/(ω�n)(An(λ
′
n)Bn(λ

′′
n) − An(λ

′′
n)Bn(λ

′
n))

−1

× (An(λ
′
n)Bn(λ

′′
n)/λ

′′
n − An(λ

′′
n)Bn(λ

′
n)/λ

′
n). (67)
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Using the RTT-relations following from (5), we can permute An and B−1
n in (66) to get an

equivalent formula

un = ωλ′
nanAn(ωλ′

n)B
−1
n (ωλ′

n). (68)

Using (47) and (25) we obtain (63).
We can also get the formulas for un−1 and vn−1. We express L−1

n (λ) in terms of An(λ) and
Bn(λ) using (66) and (67). Now the formula (65) allows one to find expressions for An−1(λ)

and Bn−1(λ) in terms of An(λ) and Bn(λ). Finally we substitute these expressions into (66)
and (67) in which the indices n are replaced by n − 1. This gives us expressions for un−1 and
vn−1 in terms of An(λ) and Bn(λ). The described procedure can be iterated to express the
local operators uk and vk in terms of An(λ) and Bn(λ). For example, the result for un−1 is

un−1 = ωλ′
n−1an−1(An(ωλ′

n−1)(ω
2λ′

n−1ancn + vnbndn/�n) − Bn(ωλ′
n−1)ωun(cn − dnvn))

× (−An(ωλ′
n−1)ωλ′

n−1u−1
n (an − bnvn) + Bn(ωλ′

n−1)(1 + ω2λ′
n−1�nvn)

)−1
,

where ωλ′
n−1 = −bn−1/(an−1�n−1) and expressions (68) and (67) for un and vn have to be

substituted. It gives the action of un−1 on
∣∣�ρn

〉
. We see that the formula gets quite involved.

However, u1 can easily be expressed in terms of Dn and Bn:

u1 = 1

c1
Dn

(
− d1

c1�1

)
B−1

n

(
− d1

c1�1

)
. (69)

For our purpose of finding matrix elements of spin operator between eigenstates |�ρ,E〉 of
homogeneous tn(λ) we can choose any spin operator uk because they all are related by the
action of translation operator having the same eigenstates |�ρ,E〉. In what follows we consider
matrix elements of the spin operator un because the corresponding formula for the action (63)
is the simplest.

At the end of this section we would like to mention some similarity of our formulae with
the formulae from the paper [51], where the local operators for the quantum Toda chain are
expressed in terms of quantum separated variables with the use of a recursive construction of
the eigenvectors [22].

5. The general inhomogeneous N = 2 BBS model

In the N = 2 case we have two charge sectors ρ = 0, 1. Following the language of e.g.
[14, 17, 24] the sector ρ = 0 will be called the Neveu–Schwarz (NS)-sector, and ρ = 1 the
Ramond (R) sector. We are going to show that the spin matrix elements can be written in a
fairly compact, although not yet factorized form (85) and (86). The full factorization will be
achieved later for the homogeneous Ising case.

5.1. Solving the Baxter equations and norm of states

Let us fix an eigenvalue polynomial t (λ|ρ, E) of t(λ) corresponding to a right eigenvector
|�ρ,E〉 (since in the following our chain will have the fixed length n we often shall skip the
index n. Also sometimes we shall suppress the arguments ρ, E in t).

In order to find |�ρ,E〉 explicitly we have to solve the associated n − 1 systems
(k = 1, 2, . . . , n − 1) of (right) Baxter equations:

t (−rn,k)Q
R
k (0) = (
+

k (−rn,k) + 
−
k (rn,k)

)
QR

k (1),

t (rn,k)Q
R
k (1) = (
+

k (rn,k) + 
−
k (−rn,k)

)
QR

k (0).
(70)

Since t (λ|ρ, E) is eigenvalue polynomial, the functional relation (61) ensures the existence of
non-trivial solutions to (70) with respect to the unknown variables QR

k (0) and QR
k (1) for every
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k = 1, 2, . . . , n − 1. In the N = 2 case, this means that for every k we have one independent
linear equation (in the case of degenerate eigenvalues, possibly no equation). In the case of
generic parameters, both sides of each equation will be non-zero. So, fixing QR

k (0) = 1 we
obtain two equivalent expressions for QR

k (1):

QR
k (1) = t (−rn,k)


+
k (−rn,k) + 
−

k (rn,k)
= 
+

k (rn,k) + 
−
k (−rn,k)

t (rn,k)
. (71)

Analogously from the left-Baxter equations, fixing QL
k (0) = 1 we obtain

QL
k (1) = (−1)n−1t (−rn,k)


+
k (rn,k) + 
−

k (−rn,k)
= 
+

k (−rn,k) + 
−
k (rn,k)

(−1)n−1t (rn,k)
.

Since for generic parameters t (rn,k|ρ, E) �= 0 these explicit formulae give

QL
k (ρn,k)Q

R
k (ρn,k) = (−1)ρn,k(n−1)t ((−1)ρn,k rn,k)/t (rn,k).

To get the periodic state, we have to insert the Skylanin-separation factor (54). Now for N = 2
the functions wp are simple:

wp(0) = 1, wp(1) = y

1 + x
= 1 − x

y
, (wp(1))2 = 1 − x

1 + x
. (72)

In the Sklyanin factor we have to use the Fermat point p
n,m
n,l = (

x
n,m
n,l , y

n,m
n,l

)
defined by the

coordinate x
n,m
n,l = rn,m/rn,l . Here it can be expressed it in terms of x

n,m
n,l only and we obtain

〈�ρ,E|�ρ,E〉〈
�̃ρ,ρ′

n

∣∣�̃ρ,ρ′
n

〉 =
∑
ρ′

n

∏n−1
l<m(−1)ρn,l+ρn,m(rn,m + rn,l)

2∏n−1
k=1 QL

k (ρn,k)Q
R
k (ρn,k)∏n−1

l<m((−1)ρn,l rn,l + (−1)ρn,mrn,m)2
. (73)

We can normalize to a convenient reference state. For the moment, simple formulae arise if
for the normalization we chose the auxiliary state |�̃0,0〉 where 0 = (0, 0, . . . , 0). From (48)
we obtain 〈

�̃ρ,ρ′
n

∣∣�̃ρ,ρ′
n

〉
〈�̃0,0|�̃0,0〉

=
∏n−1

l<m(rn,m(−1)ρn,m + rn,l(−1)ρn,l )∏n−1
l<m(rn,m + rn,l)

. (74)

Combining all these formulae we get for the left-right overlap of the transfer-matrix
eigenvectors of the periodic BBS model at N = 2:

〈�ρ,E|�ρ,E〉
〈�̃0,0|�̃0,0〉

=
∏n−1

l<m(rn,m + rn,l)∏n−1
l=1 t (rn,l)

∑
ρ′

n

∏n−1
l=1 (−1)ρn,l t ((−1)ρn,l rn,l)∏n−1

l<m((−1)ρn,mrn,m + (−1)ρn,l rn,l)
. (75)

This formula is not yet very useful since from (53) it contains the summation over the
n − 1 Z2-variables ρ′

n defined in (44). However, in [26] it is shown how to perform this sum
explicitly, and the fully factorized result is

〈�ρ,E|�ρ,E〉
〈�̃0,0|�̃0,0〉

= 2n−1r̃ ′
n

∏n−1
l<m(rn,m + rn,l)∏n

k=1

∏n−1
l=1 (rn,l + μk)

n∏
i<j

(μi + μj), (76)

where −μi are the zeros of the eigenvalue polynomial of t(λ|ρ, E):

t(λ|ρ, E)|�ρ,E〉 = �

n∏
i=1

(λ + μi)|�ρ,E〉. (77)

We do not specify the factor �, since in the following it will cancel.
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5.2. Matrix elements between eigenvectors of the periodic N = 2 BBS model

In (63) we obtained the action of un on an eigenvector
∣∣�ρn

〉
of Bn(λ): the result is a linear

combination of the original vector plus a sum of vectors which each have one component of
ρn shifted. In order to get the matrix elements of un in the periodic model, using (50) we first
pass to charge eigenstates

〈
�̃ρ,ρ′

n

∣∣, ∣∣�̃ρ,ρ′
n

〉
:〈

�̃ρ,ρ′
n

∣∣ = 〈�0,ρ′
n

∣∣ + (−)ρ
〈
�1,ρ′

n

∣∣, ∣∣�̃ρ,ρ′
n

〉 = ∣∣�0,ρ′
n

〉
+ (−)ρ

∣∣�1,ρ′
n

〉
. (78)

Since ω = −1, un anti-commutes with Vn so that only matrix elements of un between states of
different charge ρ can be nonzero. In the following we shall chose the right eigenvector from
ρ = 1, and then the left eigenvector must have ρ = 0 (the opposite choice gives a different
sign in (79)). Using (63), we find〈
�̃0,ρ′

n

∣∣un

∣∣�̃1,ρ′
n

〉〈
�̃0,ρ′

n

∣∣�̃0,ρ′
n

〉 = an

r̃n

(−1)ρ̃
′
n − �1�2 · · · �n−1bn

rn,0
, (79)

〈
�̃0,ρ′+k

n

∣∣un

∣∣�̃1,ρ′
n

〉〈
�̃0,ρ′

n

∣∣�̃0,ρ′
n

〉 = r̃n−1anbncn

rnrn,0

(
1 +

(−1)ρn,k dn

�ncnrn,k

)
(−1)ρ̃

′
n

∏n−2
l=1 y

n,k
n−1,l∏

s �=k(rn,k(−1)ρn,k + rn,s(−1)ρn,s )
. (80)

Of physical interest are the matrix elements between periodic eigenstates. To get these we
have to form linear combinations determined by the solutions of the Baxter equations: Recall
(53): |�ρ,E〉 =∑ρ′

n
QR(ρ′

n|ρ, E)
∣∣�̃ρ,ρ′

n

〉
and the corresponding left equations.

Let 〈�0| be a left eigenvector of the transfer-matrix tn(λ) with ρ = 0 and |�1〉 be a right
eigenvector with ρ = 1 (often suppressing the subscripts E, E′):

〈�0,E′ |t(λ|0, E′) = t (0)(λ)〈�′
0,E|, t(λ|1, E)|�1,E〉 = t (1)(λ)|�1,E〉. (81)

Let Q
L(0)
k (ρn,k) and Q

R(1)
k (ρn,k) be the solutions of Baxter equation corresponding to these

two eigenvectors. After some simplification we get for the matrix elements (keeping the
normalization by the auxiliary ‘reference’ state):

〈�0|σ z
n |�1〉

〈�̃0,0|�̃0,0〉
=
∑
ρ′

N (ρ′)

(
R0(ρ

′)
(

an

r̃
(−1)ρ̃

′ − �1�2 · · · �n−1bn

r0

)
+

n−1∑
k=1

Rk(ρ
′)

)
, (82)

where

N (ρ′) = (−1)nρ̃ ′
n−1∏
l<m

rl + rm

rl(−1)ρl + rm(−1)ρm
, R0(ρ

′) =
n−1∏
l=1

Q
L(0)
l (ρl)Q

R(1)
l (ρl), (83)

Rk(ρ
′) = −anbncn

r0
Q

L(0)
k (ρk + 1)Q

R(1)
k (ρk)

n−1∏
l �=k

Q
L(0)
l (ρl)Q

R(1)
l (ρl)

×
(

1 − dn

�ncnνk

)
νn−1

k χk∏
s �=k(νk − νs)

(84)

with rk = rn,k, ρk = ρn,k, k = 0, 1, . . . , n − 1,

νk = −rk(−1)ρk , r̃ = r0r1 · · · rn−1 and ρ̃ ′ =
n−1∑
k=1

ρk.

The origin of the different terms in (82) is as follows: the sum over ρ′ comes from (53), N (ρ′)
is the normalization factor from (74). The terms at R0(ρ

′) arise from the first line of (63): the
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shift in ρn,0 affects the charge sector only. The sum over k and expression for Rk(ρ
′) come

from the second line in (63). Now, the sum over k can be performed. Indeed, as shown in
[27], using the Baxter equations, some cancellations take place and (82) can be written as

〈�0|un|�1〉
〈�̃0,0|�̃0,0〉

= an

2r0

∑
ρ′∈Z

n−1
2

N (ρ′)R0(ρ
′)R(ρ′) (85)

with

R(ρ′) = t (0)(−ζn)∏n−1
l=1 (−ζn + (−1)ρl rl)

+
t (1)(ζn)∏n−1

l=1 (ζn + (−1)ρl rl)
, ζn = bn

an�n

. (86)

Despite the simple appearance, for the general inhomogeneous N = 2 BBS model,
performing the sums over the Z2 variables explicitly seems to be a presently hopeless task.
However, for the homogeneous Ising model we shall show this to be possible.

6. Homogeneous N = 2 BBS model

6.1. Spectra and zeros of the Bn- and tn-eigenvalue polynomials

We now specialize to N = 2 and take all parameters site independent (‘homogeneous’):

am = a, bm = b, cm = c, dm = d, �m = �, rm = r, Lm(λ2) = L(λ2), ∀m.

(87)

Then the classical monodromy is(
An(λ

2) Bn(λ
2)

Cn(λ
2) Dn(λ

2)

)
= (L(λN))n. (88)

Consider trace, determinant and eigenvalues x± of L:

τ(λ2) = trL(λ2) = 1 +
b2d2

�2
− λ2(�2 + a2c2), (89)

δ(λ2) = detL(λ2) = (b2/�2 − λ2a2)(d2 − λ2c2�2) = F(λ)F (−λ), (90)

x± = 1

2

(
τ ±

√
τ 2 − 4δ

)
, F (λ) = (b − a�λ)(λc + d/�). (91)

From the matrix L(λ2) we obtain

Bm(λ2) = −λ2(a2 − b2)
(
xn

+ − xn
−
)/

(x+ − x−), (92)

so that the zeros of Bm are at x+/x− = eimφn,s with

φn,s = 2πs/n, s = 1, 2, . . . , n − 1, s �= 0. (93)

Using τ 2 = 4δ cos2(φ/2) and (89), (90) we can translate the zeros labeled by φn,s by a
quadratic equation in λ2 into zeros λn,s .

Now we solve the functional relations (59) and (61) for the transfer matrix spectrum.
Using (59) for j = 2 and eliminating τ (3) by (61) we get the functional relation

t (λ)t (−λ) = (−1)ρ(z(λ) + z(−λ)) + An(λ
2) + Dn(λ

2) (94)

which we shall use to find t (λ). In terms of (89) and (90) this reads

t (λ)t (−λ) = (−1)ρ
(
δn

+ + δn
−
)

+ xn
+ + xn

−, (95)
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where δ± = (b ± a�λ)(d ∓ c�λ); δ+δ− = δ(λ2) = x+x−. Introducing q taking the n values
π(2s + 1 − ρ)/n, s = 0, . . . , n − 1, we can write (94) as

t (λ)t (−λ) = (−1)n
∏

q

(eiqδ+ − τ(λ2) + e−iqδ−) = (−1)n
∏

q

(A(q)λ2 − C(q) + 2iB(q)λ)

with

A(q) = a2c2 − 2�ac cos q + �2; B(q) = (ad − bc) sin q;
C(q) = 1 − 2(bd/�) cos q + b2d2/�2.

(96)

Factorizing the polynomial in λ we obtain

t (λ)t (−λ) = (−1)n
∏

q

A(q)(λ − sq)(λ + s−q) (97)

with

sq = 1

A(q)
(
√

D(q) − iB(q)), D(q) = A(q)C(q) − B(q)2, (98)

(fixing the sign of
√

D(q) requires a special convention, see [25]) and after some arguments
we find the spectrum

t (λ) = (ancn + (−1)ρ�n)
∏

q

(λ ± sq), (99)

where the signs are not yet fixed. Comparing the λ-independent term in (51)

t (λ) = 1 + (−1)ρbndn/�n + E1λ + · · · + En−1λ
n−1 + λn(ancn + (−1)ρ�n). (100)

with the corresponding term in (99) shows that the number of minus signs in (99) must be
even (odd) for the NS-sector ρ = 0 (R-sector ρ = 1).

It is useful to introduce the following notion: the eigenvalue (99) with all + signs is called
to possess ‘no quasi-particle’ excitations. Each factor labeled by q having a minus sign is said
to contribute the ‘excitation of the q-quasi-momentum’. We shall accordingly label the minus
signs by a set of variables σq ∈ Z2, where for unexcited (excited) levels q we put σq = 0
(σq = 1). So instead of (99), we shall write more precisely

t (ρ)(λ) = (ancn + (−1)ρ�n)
∏

q

(λ + (−1)σqsq). (101)

The corresponding eigenvectors have been considered for the inhomogeneous case in
subsection 5.2.

6.2. Functional relation for the diagonal-to-diagonal Ising model transfer matrix

In this subsection we specialize the results of the previous subsection to the case of the
diagonal-to-diagonal transfer matrix of the Ising model on a square lattice (15). So, we set
a = c, b = −d, � = 1 and λ = b/a. Let us calculate the ingredients of the functional
relation (94). We have Fm(λ) = −(b − aλ)2. Therefore due to (60), z(λ) = (−1)n(b + aλ)2n,

z(b/a) = (−1)n(2b)2n, z(−b/a) = 0 and the averaged L-operator (27) at λ2 = b2/a2 becomes

Lk(b
2/a2) =

(
1 − b2/a2, −b2/a2(a2 − b2)

a2 − b2, b2(b2 − a2)

)
=
(

1

a2

)
· (1 − b2/a2) · (1, −b2).

Hence

An(b
2/a2) + Dn(b

2/a2) = tr Tn(b
2/a2) = (1 − b2/a2)n(1 − a2b2)n.
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Substituting these expressions into (94), we get the following functional relation

t (b/a)t (−b/a) = (−1)ρ+n(2b)2n + (1 − b2/a2)n(1 − a2b2)n.

We want to compare this with the functional relation equation (7.5.5) in [43]:

V (K,L)V (L + iπ/2,−K)C = (2i sinh 2L)nI + (−2i sinh 2K)nR,

where C is the operator of translation, R is the operator of spin flip Vn and V (K,L) is
the transfer-matrix (13) with Kx = 0,Ky = L,Kd = K, e−2L = b/a, tanh K = ab.
Therefore, V (K,L) = exp(nL) coshn Ktn(b/a). Similar analysis gives V (L+iπ/2,−K)C =
in exp(nL) coshn Ktn(−b/a). Now taking into account that the eigenvalues of R are (−1)ρ

and

2 sinh 2K = 4ab

1 − a2b2
, 2 sinh 2L = a2 − b2

ab
,

exp(−2L)

cosh2 K
= (1 − a2b2)b/a,

we see that both functional relations are identical.

6.3. Ising model: Spectra and zeros of the Bn(λ)- and tn(λ)-eigenvalue polynomials

We now specialize further to the Ising case (14) as already advertised in subsection 2.2:

aj = cj = a, bj = dj = b, �j = 1; ∀j. (102)

In the Ising case (102) the 2n eigenvalues of (101) with (98) can be written (2n−1 in each sector
ρ = 0, 1) as

t (ρ)(λ) = (a2n + (−1)ρ)
∏

q

(λ + (−1)σqsq), sq = s−q =
√

b4 − 2b2 cos q + 1

a4 − 2a2 cos q + 1
, (103)

where the quasi-momentum q in each sector takes n values:

q = 2π

n
m, m integer for ρ = 1(R); m half-integer for ρ = 0 (NS). (104)

Recall that we found from (100) that in the NS (R) sector, the eigenstates of t(λ) have an even
(odd) number of excitations:

∏
q(−1)σq = (−1)ρ .

For q = 0 (this occurs for R-sector only) and q = π we define

s0 = b2 − 1

a2 − 1
, sπ = b2 + 1

a2 + 1
. (105)

q = π is in the R sector for n even. However, for n odd it is in the NS sector. The different
presence of factors (λ± s0) and (λ± sπ ) in (103) for n even or odd often makes it necessary to
consider the cases n-even and n-odd separately. In the following we shall reserve the notation
λq for λq = (−1)σqsq and otherwise use sq as defined in (103).

The zeros λn,k of the Bn(λ) eigenvalue polynomial are determined by (93), (89), (90):

τ
(
λ2

n,k

) = 4 cos2 qn,kF (λn,k)F (−λn,k), qn,k = πk/n, k = 1, . . . , n − 1. (106)

Since now

F(λ) = F(−λ) = b2 − a2λ2; τ(λ2) = 1 + b4 − (1 + a4)λ2, (107)

we obtain

rn,k =
√

(b4 − 2b2 cos qn,k + 1)/(a4 − 2a2 cos qn,k + 1) = sqn,k
. (108)

Observe that sq and rn,k may coincide.
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6.4. Ising model state vectors from Baxter equations

In order to obtain the eigenvectors of t(λ), we have to solve Baxter’s equations. For
our restricted parameters (102) we have F(λ) = F(−λ) and the left and right Baxter
equations (57) and (56) become identical. Omitting the superscripts L and R on Qk and
recalling λn,k = −(−1)ρn,k rn,k, ρn,k = 0, 1 we obtain:

tn(λn,k)Qk(ρn,k) =
(

(−1)ρF n−1(λn,k)

(λn,k)n−1χk

+ (−λn,k)
n−1χkF (λn,k)

)
Qk(ρn,k + 1). (109)

From (109) we get the following compatibility condition:

t (−rn,k)t (rn,k) = (−1)n−1

(
(−1)ρF n−1(rn,k)

(rn,k)n−1χk

+ (−rn,k)
n−1χkF (rn,k)

)2

,

if t (λ) is an eigenvalue from the sector ρ. If (−1)k = (−1)ρ+1 then the quasi-momentum
q = qn,k belongs to the sector ρ and for rn,k = sqn,k

we have t (−rn,k)t (rn,k) = 0. This implies
a relation not depending on a particular t (λ) and its ρ:

χ2
k r

2(n−1)
n,k = (−1)n+k+1Fn−2(rn,k). (110)

Although the eigenvalue polynomial t (λ) is known from (103), to solve (109) for the Qk(ρn,k)

can meet a difficulty if tn(λn,k) vanishes or if, due to (110), the big bracket on the right of
(109) vanishes. All this can happen and we have to distinguish four cases (we suppress n and
write just rk = rn,k and ρk = ρn,k):

(i) (−1)ρ = (−1)k . This is the easy case, since from (104) and (106) tρ(rk) �= 0 and
tρ(−rk) �= 0, and we may normalize and solve

Q
L,R
k (0) = 1, Q

L,R
k (1) = (−1)n−1tρ(−rk)

2χkr
n−1
k F (rk)

.

The other three cases occur for (−1)ρ = (−1)k−1.

(ii) tρ(rk) �= 0, tρ(−rk) = 0. tρ(λ) contains a factor (λ + rk)
2 (both q = ±qk not excited), we

may normalize

Q
L,R
k (0) = 1, Q

L,R
k (1) = 0.

(iii) tρ(rk) = 0, tρ(−rk) �= 0. tρ(λ) contains a factor (λ − rk)
2 (both q = ±qk are excited),

we cannot choose Q
L,R
k (0) = 1, but we may normalize

Q
L,R
k (0) = 0, Q

L,R
k (1) = 1.

(iv) tρ(rk) = tρ(−rk) = 0. tρ(λ) contains
(
λ2 − r2

k

)
(either q = +qk or q = −qk is excited):

A L’Hôpital procedure, using a slight perturbation of (102) as described in [26], is required
(to obtain eigenvectors of translation operator), leading to

QR
k (0) = QL

k (0) = 1, QR
k (1) = −QL

k (1) = (−1)n+σqk
+12i sin qkt

ρ

q̌k
(−rk)

nχkr
n−1
k A(qk)

(observe that from the L’Hôpital-limit QR
k (1) = −QL

k (1)), where

tρ(λ) = t
ρ

q̌k
(λ)
(
λ + (−1)σqk sqk

)(
λ − (−1)σqk s−qk

)
, A(q) = a4 − 2a2 cos q + 1. (111)

In the following we shall consider only the three cases which allow the normalization
Q

L,R
k (0) = 1. Case (iii) can be treated too, but requires a special treatment, which here we
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shall not enter. According to which case the corresponding eigenvalue polynomial belongs,
let us define the sets D̆(ρ), D̂(ρ),D(ρ):

k ∈ D̆(ρ) if tρ has a factor (λ + rk)
2, i.e. we have case (ii),

k ∈ D̂(ρ) if tρ has a factor (λ − rk)
2, case (iii), and

k ∈ D(ρ) if tρ has a factor (λ2 − r2
k ), i.e. we have case (iv).

By D = |D| we denote the number of elements in D = D(0) ∪ D(1), similarly for D̆, etc.

7. Calculation of the matrix elements of σz
n in the homogeneous Ising model

7.1. Explicit evaluation of the factors N (ρ ′)R0(ρ
′)R(ρ ′) in (85)

We now start to evaluate (85) with (83) and (86) for the homogeneous Ising model where the
parameters simplify drastically. Now

ζ = b/a, r2
0 = (a2 − b2)(a4n − 1)/(a4 − 1) (112)

and un is represented by the Pauli σz.
We had agreed to consider initial states from the R-sector. Then for matrix elements of σz

the final state must be NS. We specify the initial state by the momenta which are excited, i.e.
by the σk which are one, analogously the final state. Excluding for the time being case (iii),
we take D̂(ρ) to be empty.

On the right of (83) we have to evaluate the factors N (ρ′)R0(ρ
′)R(ρ′). Let us start with

R0(ρ
′) =∏n−1

l=1 Q
(0)
l (ρl)Q

(1)
l (ρl).

For any choice of excitations, always one of the factors Q
(0)
l (ρl) or Q

(0)
l (ρl) is from

case (i) of subsection 6.4. Since we exclude for the moment case (iii), the other factors then
must be from (ii) or (iv). So always Q

(0)
l (0)Q

(1)
l (0) = 1. For l ∈ D̆, case (ii), we have

Q
(0)
l (1)Q

(1)
l (1) = 0 since either Q

(0)
l (1) = 0 or Q

(1)
l (1) = 0 depending on the parity of l. So,

in (83) the summation reduces to the summation over ρl for l ∈ D only, with fixed ρl = 0 for
l ∈ D̆.

R0(ρ
′) receives non-trivial contributions from Qk(1) of cases (i) and (iv). However, these

can be written in a simple way if we use the explicit formulae for t (ρ)(−rk). For both values
ρl = 0, 1 the result is

Q
(0)
l (ρl)Q

(1)
l (ρl) = (−1)(n−1)ρl

(−1)ρl rl + ξl

rl + ξl

·
∏
k∈D̆

(−1)ρl rl + rk

rl + rk

, (113)

where we get different results according to whether s0 or sπ or both (105) are excited:

ξl =

⎧⎪⎪⎨⎪⎪⎩
(−1)σ0

b2 − eiq

a2 − eiq

(−1)σ0
b2 eiq − 1

a2 − eiq

for (−1)σ0 = ±(−1)σπ ; q̃l = (−1)σql
+|D|+lql . (114)

Now, multiplying by N (ρ′), it is easy to see that the products k ∈ D̆ in (113) cancel (recall
that ρk = 0 for k ∈ D̆) and we get finally

N (ρ) · R0(ρ
′) =

∏
l∈D

(−1)ρl
(−1)ρl rl + ξl

rl + ξl

∏
m∈D,m>l

rl + rm

(−1)ρl rl + (−1)ρmrm

. (115)

In the calculation of R(ρ′) in (86) we have to insert our explicit expressions for t (0)(−ζn)

and t (1)(ζn) from (103). Here, as already mentioned after (105), the cases of even n and odd n
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give different formulae. For example, the factor (λ − (−1)σπ sπ ) is present only for R n even
and NS n odd. So

NS, n odd: t (0)(−ζ ) = (a2n + 1)(−ζ + (−1)σπ sπ )
∏

k∈D̆(0)

(−ζ + rk)
2
∏

l∈D(0)

(
ζ 2 − r2

l

)
, (116)

(for even n omit the bracket with sπ ), since in the NS-sector only odd k appear, and these fall
into one of the classes (ii) and (iv), class (iii) being momentarily excluded. Analogously,

R, n odd: t (1)(ζ ) = (a2n − 1)(ζ + (−1)σ0s0)
∏

k∈D̆(1)

(ζ + rk)
2
∏

l∈D(1)

(
ζ 2 − r2

l

)
. (117)

By slight manipulation we can move the ρl-dependent terms such that they appear only in one
place each in the numerator and obtain

R(n odd)(ρ′) = R ·
{

(−1)σπ (a2 + 1) (−ζ + (−1)σπ sπ )
∏
l∈D

((−1)ρl rl + ζ ) − (−1)σ0

× (a2 − 1) (ζ + (−1)σ0s0)
∏
l∈D

((−1)ρl rl − ζ )

}
·
∏
k∈D̆

((−1)kζ + rk) (118)

with

R = (αβ)−(n−1)/2 an−1(a4n − 1)/(a4 − 1), α = a2 − b2, β = 1 − a2b2. (119)

The first term in the curly bracket comes from the NS-sector final state, the second from the
R initial state. The formula for R(n even) is similar.

7.2. Summation, square of the matrix element

Combining (115) with (118) the spin matrix element is given by a multiple sum over the
components of ρ′:

〈�0|σ z
n |�1〉

〈�̃0|�̃0〉
=
∑

ρ′∈Z
n−1
2

(
Rν

+

∏
l∈D

((−1)ρl rl + ζ ) + Rν
−
∏
l∈D

((−1)ρl rl − ζ )

)

×
∏
l∈D

(−1)ρl
(−1)ρl rl + ξl

rl + ξl

∏
m∈D,m>l

rl + rm

(−1)ρl rl + (−1)ρmrm

, (120)

with some ρ′-independent factors Rν
±. The superscript ν is there to remind us that we have

different expressions for n even and n odd, respectively. Now, in [27] it is shown that this
sum can be performed, resulting in a factorized expression. As an example here we quote the
summation formula for the multiple summation over ρl with l ∈ D if the dimension of D is
odd and ξl defined by the upper formula of (114):∑
ρl ,l∈D

∏
l∈D(−1)ρl ((−1)ρl rl + ξl)((−1)ρl rl + ζ )∏

l<m,l,m∈D((−1)ρl rl + (−1)ρmrm)
= C(b ± a)

×
⎛⎝∏

j∈D
eiq̃j ∓ ab

⎞⎠ ∏l∈D(2rl/a)(a2eiq̃l − 1)(D−1)/2(eiq̃l − a2)(D−3)/2∏
l,m∈D,l<m(±(eiq̃l+iq̃m − 1))

, (121)

C = α−(D−1)(D−3)/4β−(D−1)2/4.

The case of D even is similar (see (52) of [27]).
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In the following, we shall be interested in the product of the matrix elements of the spin
operator between arbitrary periodic states, which does not depend on normalization of the left
and right eigenstates, i.e. we want to calculate

〈�0|un|�1〉〈�1|un|�0〉
〈�0|�0〉〈�1|�1〉 . (122)

Taking the absolute squares, several factors in (121) can be rewritten, e.g.

|a2eiq̃l − 1|2 = |eiq̃l − a2|2 = A(q̃l) = a4 − 2a2 cos q̃l + 1, (123)

|eiq̃l+iq̃m − 1|2 = r2
m − r2

l

αβ
A(q̃m)A(q̃l)

sin 1
2 (q̃l + q̃m)

sin 1
2 (q̃l − q̃m)

(124)

and all factors α, β and A(q̃m) cancel. So we get for arbitrary n and σ0 = σπ :

〈�0|σ z
n |�1〉〈�1|σ z

n |�0〉
〈�̃0,0|�̃0,0〉2

= (λ2
π − λ2

0

)(D−δ)/2
(λ0 + λπ)δ

∏
l∈D

2rl

(λ0 + rl)(λπ + rl)

×
∏

l<m,l,m∈D

rl + rm

rl − rm

· sin 1
2 (q̃l − q̃m)

sin 1
2 (q̃l + q̃m)

(125)

where δ = 1. In a similar way we can find the product of matrix elements in the case of
σ0 �= σπ . The final result is (125) with δ = 0. Observe that the explicit appearance of
excitations of type (ii), i.e. k ∈ D̆ has disappeared from our formula (recall that we still
exclude k ∈ D̂).

7.3. Normalization of the periodic states, final result in terms of λ0, λπ , rk and q̃l

In order to compare (125) to the results obtained by A Bugrij and O Lisovyy [17, 18] we
change the normalization and calculate the ratio (122). To do this we have to divide (125) by

〈�0|�0〉〈�1|�1〉/〈�̃0,0|�̃0,0〉2. (126)

However, formula (76) cannot be used directly in our degenerate Ising case (14). As in case
(iv) we have first to go off the Ising point and consider ad − bc = η and apply l’Hopital’s rule
for η → 0. For n odd the result is

〈�0|�0〉〈�1|�1〉
〈�̃0,0|�̃0,0〉2

= 2|D|
n∏

k=1

(2rn,k) ·
∏

k-odd(λπ ± rn,k)∏
k-even(λπ + rn,k)

·
∏

k-even(λ0 ± rn,k)∏
k-odd(λ0 + rn,k)

×
∏

k<l,k,l-odd((rn,k + rn,l)(±rn,k ± rn,l))
∏

k<l,k,l-even((rn,k + rn,l)(±rn,k ± rn,l))∏
k-odd,l-even((±rn,k + rn,l)(rn,k ± rn,l))

,

and similar for n even, see [26].
Including also the hitherto excluded case (iii), our final formula for the matrix element is

〈�0|σ z
n |�1〉〈�1|σ z

n |�0〉
〈�0|�0〉〈�1|�1〉 = (λ2

π − λ2
0

)(D−δ)/2
(λ0 + λπ)δ

∏
l<m

l,m∈D

(
rl + rm

rl − rm

· sin 1
2 (q̃l − q̃m)

sin 1
2 (q̃l + q̃m)

)

× �n

2D
∏

k∈D(+̇2rk)
·

∏
k odd,l even((−̇rk+̇rl)(+̇rk−̇rl))∏

k<l,k,l odd((+̇rk+̇rl)(−̇rk−̇rl))
∏

k<l,k,l even((+̇rk+̇rl)(−̇rk−̇rl))
,

(127)
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where

�n =
∏

k∈D(0) (λ0+̇rk)∏
k∈D(1) (λ0+̇rk)

∏
k∈D(1)

(
λ2

0 − r2
k

) ·
∏

k∈D(1) (λπ +̇rk)∏
k∈D(0) (λπ +̇rk)

∏
k∈D(0)

(
λ2

π − r2
k

) , for odd n,

�n =
∏

k∈D(0) (λ0+̇rk)(λπ +̇rk)

(λ0 + λπ)
∏

k∈D(1) (λ0+̇rk)(λπ +̇rk)
∏

k∈D(1)

(
λ2

0 − r2
k

)(
λ2

π − r2
k

) , for even n.

Here we used a superimposed dot: ±̇rm as the short notation for rm if m ∈ D̆, for ±rm if
m ∈ D and for −rm if m ∈ D̂, respectively. For composite sets of momentum levels k we

write D = D̆ ∪ D̂,D(0) = D̆(0) ∪ D̂(0),D(1) = D̆(1) ∪ D̂(1).

7.4. Final result in terms of momenta

Let {q1, q2, . . . , qK} and {p1, p2, . . . , pL} be the sets of the momenta of the excitations
presenting the states |�0〉 from the NS-sector and |�1〉 from the R-sector, respectively. After
some lengthy but straightforward transformations of (127) we obtain

〈�0|σ z
n |�1〉〈�1|σ z

n |�0〉
〈�0|�0〉〈�1|�1〉 = J (sπ + s0)

(
s2
π − s2

0

)(K+L−1)/2

×
K∏

k=1

P NS
qk

∏ NS
2

q �=|qk | Nq,qk∏ R
2
p Np,qk

·
L∏

l=1

P R
pl

∏ R
2
p �=|pl | Np,pl∏ NS
2

q Nq,pl

·
∏K

k=1

∏L
l=1 Mqk ,pl∏K

k<k′ Mqk ,qk′
∏L

l<l′ Mpl ,pl′
, (128)

where NS/2 (R/2) is the subset of quasi-momenta from NS (R) taking values in the segment
0 < q < π , NS/2 (R/2) containing qk with odd k (even k):

Mα,β = sα + sβ

sα − sβ

· sin α+β

2

sin α−β

2

, Mα,−α = s2
α

(
s2

0 − s2
π

)(
s2
π − s2

α

)(
s2

0 − s2
α

) ,
Nα,β = sα + sβ

sα − sβ

, J =
∏

q

NS
2 (s0 + sq)∏

p

R
2 (s0 + sp)

·
∏ NS

2
q
∏ R

2
p (sq + sp)

2∏ NS
2

q,q′(sq + sq′)
∏ R

2
p,p′(sp + sp′)

.

For n odd,

P NS
q = sq

(sπ − sq)(s0 + sq)
, q �= π, P R

p = sp

(sπ + sp)(s0 − sp)
, p �= 0,

P R
0 = P NS

π = 1

sπ + s0
, J =

∏
p

R
2 (sπ + sp)∏

q

NS
2 (sπ + sq)

J ,

for n even,

P NS
q = sq

(sπ + sq)(s0 + sq)
, P R

p = sp

(sπ − sp)(s0 − sp)
, p �= 0, π,

P R
0 = −P NS

π = 1

sπ − s0
, J =

∏
p

NS
2 (sπ + sq)∏

q

R
2 (sπ + sp)

J .
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7.5. Bugrij–Lisovyy formula for the matrix elements

In [18] the following formula for the square of the matrix element of spin operator for the
finite-size Ising model was conjectured:∣∣
NS〈q1, q2, . . . , qK

∣∣σ z
n |p1, p2, . . . , pL〉R|2

= ξξT

K∏
k=1

∏NS
q �=qk

sinh γ (qk)+γ (q)

2

n
∏R

p sinh γ (qk)+γ (p)

2

L∏
l=1

∏R
p �=pl

sinh γ (pl )+γ (p)

2

n
∏NS

q sinh γ (pl )+γ (q)

2

·
(

ty − t−1
y

tx − t−1
x

)(K−L)2/2

×
K∏

k<k′

sin2 qk−qk′
2

sinh2 γ (qk)+γ (qk′ )
2

L∏
l<l′

sin2 pl−pl′
2

sinh2 γ (pl )+γ (pl′ )
2

∏
1�k�K
1�l�L

sinh2 γ (qk)+γ (pl )

2

sin2 qk−pl

2

. (129)

In this formula the states are labeled by the momenta of the excitations. The factors in front
of the right-hand side of (129) are defined by

ξ = ((sinh 2Kx sinh 2Ky)
−2 − 1)1/4, ξT =

( ∏NS
q

∏R
p sinh2 γ (q)+γ (p)

2∏NS
q,q′ sinh γ (q)+γ (q′)

2

∏R
p,p′ sinh γ (p)+γ (p′)

2

)1/4

,

where γ (q) is the energy of the excitation with quasi-momentum q:

cosh γ (q) =
(
tx + t−1

x

)(
ty + t−1

y

)
2
(
t−1
x − tx

) − ty − t−1
y

tx − t−1
x

cos q, (130)

and tx = tanh Kx, ty = tanh Ky .
Formula (129) can easily be derived from (128) if one takes into account the identification

of parameters (14). In particular we have tx = ab, ty = (a − b)/(a + b) and the relation

eγ (q) = asq + b

asq − b
(131)

between the energy γ (q) of the excitation with quasi-momentum q and the corresponding zero
sq of the t (λ)-eigenvalue polynomial (103). The following formulae give the correspondence
between the different parts of (129) and (128):

ξξT

sinh 1
2 (γ (0) + γ (π))

(
ty − t−1

y

tx − t−1
x

)1/2

= J,
sinh2 γ (α)+γ (β)

2

sin2 α−β

2

= − ty − t−1
y

tx − t−1
x

Mα,β .

∏NS
q �=qk

sinh γ (qk)+γ (q)

2

n
∏R

p sinh γ (qk)+γ (p)

2

= s0 + sπ

sinh γ (0)+γ (π)

2

P NS
qk

∏ NS
2

q �=|qk | Nq,qk∏ R
2
p Np,qk

,

∏R
p �=pl

sinh γ (pl )+γ (p)

2

n
∏NS

q sinh γ (pj )+γ (q)

2

= s0 + sπ

sinh γ (0)+γ (π)

2

P R
pl

∏ R
2
p �=|pl | Np,pl∏ NS
2

q Nq,pl

,

for more details, see [27].

8. Matrix elements for the diagonal-to-diagonal transfer matrix and for the quantum
Ising chain in a transverse field

In this section we derive the matrix elements of the spin operator between eigenvectors of the
diagonal-to-diagonal transfer matrix for the Ising model on a square lattice (see section 2.2).
In this case the parameters are given by (15). As has been explained there, if we vary the
parameters a and b in such a way to have fixed (a2 − b2)/(1 − a2b2) = 1/k′, the eigenvectors
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(and therefore matrix elements) will not change. So we fix a = c = k′−1/2 and b = d = 0.
Expanding the transfer matrix (3) with such parameters we obtain

tn(λ) = 1 − 2λ

k′ Ĥ + · · · , Ĥ = −1

2

n∑
k=1

(
σ z

k σ z
k+1 + k′σx

k

)
,

where Ĥ is the Hamiltonian of the periodic quantum Ising chain in a transverse field. From
(103) we get the spectrum of this Hamiltonian:

E = −1

2

∑
q

±ε(q), (132)

where the energies of the quasi-particle excitations are

ε(q) = (1 − 2k′ cos q + k′2)1/2 =
(
(k′ − 1)2 + 4k′ sin2 q

2

)1/2
, q �= 0, π,

ε(0) = k′ − 1, ε(π) = k′ + 1.

In (132), the sign +/− in the front of ε(q) corresponds to the absence/presence of the excitation
with the momentum q. The NS-sector includes the states with an even number of excitations,
the R-sector those with an odd number of excitations. The momentum q runs over the same
set as in (103). Since we have a = c and b = d, the formula (128) with sq = k′/ε(q) for
matrix elements for σ z

n can be applied. After some simplification we get the analog of (129),
now for the quantum Ising chain:

|NS〈q1, q2, . . . , qK |σ z
m|p1, p2, . . . , pL〉R|2 = k′ (K−L)2

2 ξξT

K∏
k=1

eη(qk)

nε(qk)

L∏
l=1

e−η(pl )

nε(pl )

×
K∏

k<k′

(
2 sin qk−qk′

2

ε(qk) + ε(qk′)

)2 L∏
l<l′

(
2 sin pl−pl′

2

ε(pl ) + ε(pl′)

)2 K∏
k=1

L∏
l=1

(
ε(pl ) + ε(qk)

2 sin pl−qk

2

)2

, (133)

where

ξ = (k′2 − 1)
1
4 , ξT =

∏NS
q

∏R
p (ε(q) + ε(p))

1
2∏NS

q,q′(ε(q) + ε(q′))
1
4
∏R

p,p′(ε(p) + ε(p′))
1
4

and

eη(q) =
∏NS

q′ (ε(q) + ε(q′))∏R
p (ε(q) + ε(p))

.

Formally, all these formulae are correct for the paramagnetic phase where k′ > 1, and for
the ferromagnetic phase where 0 � k′ < 1. But for the case 0 � k′ < 1 it is natural to
redefine the energy of zero-momentum excitation as ε(0) = 1 − k′ to be positive. From (132),
this change of the sign of ε(0) in the ferromagnetic phase leads to a formal change between
absence–presence of zero-momentum excitation in the labeling of eigenstates. Therefore the
number of the excitations in each sector (NS and R) becomes even. Direct calculation shows
that the change of the sign of ε(0) in (133) can be absorbed to obtain formally the same
formula (133), but with new ε(0) and even L (the number of the excitations in the R-sector)
and new ξ = (1 − k′2)1/4.

Formulae (129) and (133) allow one to reobtain well-known formulae for the Ising
model, e.g. the spontaneous magnetization [1, 2]. Indeed, for the quantum Ising chain in the
ferromagnetic phase (0 � k′ < 1) and in the thermodynamic limit n → ∞ (when the energies
of |vac〉NS and |vac〉R coincide, giving the degeneration of the ground state), we have ξT → 1
and therefore the spontaneous magnetization NS〈vac|σ z

m|vac〉R = ξ 1/2 = (1 − k′2)1/8.
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9. Conclusions

We have shown that finite-size state vectors of the Ising (and generalized Ising) model can be
obtained using the method of separation of variables and solving explicitly Baxter equations.
The Ising model is treated as a special N = 2 case of the ZN -Baxter–Bazhanov–Stroganov τ (2)-
model. Finite-size spin matrix elements between arbitrary states are calculated by sandwiching
the operators between the explicit form of the state vectors. For the standard Ising case this
gives a proof of the fully factorized formula for the form factors (129) conjectured previously
by Bugrij and Lisovyy.

We also extend this result to obtain a factorized formula for the matrix elements of the
finite-size Ising quantum chain in a transverse field. We show how specific local operators can
be expressed in terms of global elements of the monodromy matrix. The truncated functional
relation guaranteeing non-trivial solutions of the Baxter equation is compared to Baxter’s [43]
Ising model functional relation.
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